1) Basic Events
Enter probabilities between 0 and 1. If events are independent, tick the checkbox to auto-compute
P(A∩B)=P(A)·P(B).
2) Permutations & Combinations
Formulas: nPk=n!/(n−k)! • nCk=n!/[k!(n−k)!]
3) Binomial Distribution
X ~ Binomial(n, p). Compute point probability and optional cumulative range.
P(X=k)=C(n,k) pk(1−p)n−k • E[X]=np, Var[X]=np(1−p)
4) Bayes’ Theorem
Posterior P(A|B)= [P(B|A)P(A)] / [P(B|A)P(A) + P(B|¬A)(1−P(A))]